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We develop A posteriori error estimates for hyperbolic problems that are based on a superconvergence
property where (smooth) discontinuous Galerkin solutions converge at a higher rate at the outflow bound-
aries of element than they do globally. In particular, we [1] show that DG solutions of one-dimensional
hyperbolic conservation laws using piecewise-polynomials of degree p have a strong O(h2p+1) convergence
rate at the outflow ends of elements and a higher O(hp+2) convergence rate at the roots of the Radau
polynomial of degree p + 1 on elements than their global O(hp+1) rate. We use this result to construct
asymptotically correct spatial discretization error estimates for DG solutions of conservation laws.

Similar results hold for multi-dimensional problems. While Radau polynomials are not defined on un-
structured triangular meshes, we develop a theory in terms of a Dubiner basis of orthogonal polynomials
on triangular elements. The key argument in the development is a demonstration that integrals of the
discretization error vanish to leading order on each element and, simultaneously, on the outflow edges of
each element. With this, an a posteriori estimate of the discretization error is obtained as a linear combi-
nation of Dubiner polynomials of degrees p and p+ 1 on each element [2]. Since Radau polynomials are a
combination of (the orthogonal) Legendre polynomials of degrees p and p+ 1, our results may be regarded
as their extension to two dimensions. We demonstrate superconvergence by showing that the average
local discretization error on outflow edge(s) of elements converges as O(h2p+1). Thus, discretization errors
propagate between elements at a high order, and we use this to obtain global discretization error estimates.
Examples indicate that these a posteriori error estimates are generally within 10% of the actual errors for
wide ranges of mesh spacings and polynomial degrees.
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